Search results for "DIRECT-CURRENT STIMULATION"
showing 10 items of 67 documents
Anodal transcranial direct current stimulation and intermittent theta-burst stimulation improve deglutition and swallowing reproducibility in elderly…
2019
Background: Dysphagia in the elderly, known as presbydysphagia, has become a relevant public health problem in several countries. Swallowing disorders may be a consequence of different neurological disorders (secondary presbydysphagia) or the expression of the aging process itself (primary presbydysphagia). We aimed to test the therapeutic potential of two different non-invasive brain stimulation (NIBS) techniques in subjects with primary or secondary presbydysphagia. Methods: A blinded randomized controlled trial with crossover design was carried out in 42 patients, randomly assigned to anodal transcranial direct current stimulation (tDCS) or intermittent theta-burst stimulation (TBS) grou…
High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity.
2017
While most research on brain stimulation with transcranial direct current stimulation (tDCS) targets unimanual motor tasks, little is known about its effects on bimanual motor performance. This study aims to investigate the effects of tDCS on unimanual as well as bimanual motor dexterity. We examined the effects of bihemispheric anodal high-definition tDCS (HD-atDCS) on both primary motor cortices (M1) applied concurrent with unimanual and bimanual motor training. We then measured the effects with the Purdue Pegboard Test (PPT) and compared them to a sham stimulation. Between a pretest and posttest, 31 healthy, right-handed participants practiced the PPT on three consecutive days and receiv…
Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the hu…
2012
Experimental studies emphasize the importance of homeostatic plasticity as a mean of stabilizing the properties of neural circuits. In the present work we combined two techniques able to produce short-term (5-Hz repetitive transcranial magnetic stimulation, rTMS) and long-term (transcranial direct current stimulation, tDCS) effects on corticospinal excitability to evaluate whether and how the effects of 5-Hz rTMS can be tuned by tDCS preconditioning. Twelve healthy subjects participated in the study. Brief trains of 5-Hz rTMS were applied to the primary motor cortex at an intensity of 120% of the resting motor threshold, with recording of the electromyograph traces evoked by each stimulus o…
Effectiveness of tDCS to Improve Recognition and Reduce False Memories in Older Adults
2020
Background. False memories tend to increase in healthy and pathological aging, and their reduction could be useful in improving cognitive functioning. The objective was to use an active-placebo method to verify whether the application of tDCS in improving true recognition and reducing false memories in healthy older people. Method. Participants were 29 healthy older adults (65-78 years old) assigned to active or placebo group; active group received anodal stimulation at 2mA for 20 min over F7. An experimental task was used to estimate true and false recognition. The procedure took place in two sessions on two consecutive days. Results. A mixed ANOVA of true recognition showed a significant …
TRANSCRANIAL DIRECT CURRENT STIMULATION FOR TREATMENT OF FREEZING OF GAIT IN PARKINSON’S DISEASE. A CROSS-OVER STUDY
2013
The Effects of Transcutaneous Spinal Direct Current Stimulation on Neuropathic Pain in Multiple Sclerosis: Clinical and Neurophysiological Assessment
2019
Background: Central neuropathic pain represents one of the most common symptoms in multiple sclerosis (MS) and it seriously affects quality of life. Spinal mechanisms may contribute to the pathogenesis of neuropathic pain in MS. Converging evidence from animal models and neurophysiological and clinical studies in humans suggests a potential effect of transcranial direct current stimulation (tc-DCS) on neuropathic pain. Spinal application of DCS, i.e., transcutaneous spinal DCS (ts-DCS), may modulate nociception through inhibition of spinal reflexes. Therefore, ts-DCS could represents an effective, safe and well-tolerated treatment for neuropathic pain in MS, a largely unexplored topic. This…
Neither Cathodal nor Anodal Transcranial Direct Current Stimulation on the Left Dorsolateral Prefrontal Cortex alone or Applied During Moderate Aerob…
2020
There is converging evidence that both aerobic exercise (AE) and transcranial direct current stimulation (tDCS) can acutely modulate executive functions (EF). In addition, recent studies have proposed the beneficial effects of applying tDCS during AE on physical performance. This study aimed to investigate whether tDCS applied during an AE session additionally or differently effects EF. Therefore, five experiments were conducted in a counterbalanced pre-post-retention crossover design to explore the acute effects of tDCS and AE on EF (inhibition and updating) once in isolation (i.e., either cathodal, anodal tDCS or AE alone as controls) and once in a combined application (i.e., anodal and c…
Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study.
2019
Abstract Several studies have evaluated the effect of anodal transcranial direct current stimulation (tDCS) over the prefrontal cortex (PFC) for the enhancement of working memory (WM) performance in healthy older adults. However, the mixed results obtained so far suggest the need for concurrent brain imaging, in order to more directly examine tDCS effects. The present study adopted a continuous multimodal approach utilizing functional near-infrared spectroscopy (fNIRS) to examine the interactive effects of tDCS combined with manipulations of reward motivation. Twenty-one older adults (mean age = 69.7 years; SD = 5.05) performed an experimental visuo-spatial WM task before, during and after …
Anodal tDCS over the left prefrontal cortex does not cause clinically significant changes in circulating metabolites
2020
Background: Transcranial direct current stimulation (tDCS), a putative treatment for depression, has been proposed to affect peripheral metabolism. Metabolic products from brain tissue may also cross the blood–brain barrier, reflecting the conditions in the brain. However, there are no previous data regarding the effect of tDCS on circulating metabolites.\ud Objective: To determine whether five daily sessions of tDCS modulate peripheral metabolites in healthy adult men.\ud Methods: This double-blind, randomized controlled trial involved 79 healthy males (aged 20–40 years) divided into two groups, one receiving tDCS (2 mA) and the other sham stimulated. The anode was placed over the left dor…
Progression of adverse effects over consecutive sessions of transcranial direct current stimulation
2017
final draft